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Abstract—Objective: This paper presents a Transfer Learning
approach for dealing with the statistical variability of EEG
signals recorded on different sessions and/or from different
subjects. This is a common problem faced by Brain-Computer
Interfaces (BCI) and poses a challenge for systems that try to
reuse data from previous recordings to avoid a calibration phase
for new users or new sessions for the same user. Method: We
propose a method based on Procrustes analysis for matching the
statistical distributions of two datasets using simple geometri-
cal transformations (translation, scaling and rotation) over the
data points. We use symmetric positive definite matrices (SPD)
as statistical features for describing the EEG signals, so the
geometrical operations on the data points respect the intrinsic
geometry of the SPD manifold. Because of its geometry-aware
nature, we call our method the Riemannian Procrustes Analysis
(RPA). We assess the improvement in Transfer Learning via
RPA by performing classification tasks on simulated data and on
eight publicly available BCI datasets covering three experimental
paradigms (243 subjects in total). Results: Our results show that
the classification accuracy with RPA is superior in comparison
to other geometry-aware methods proposed in the literature. We
also observe improvements in ensemble classification strategies
when the statistics of the datasets are matched via RPA. Conclu-
sion and significance: We present a simple yet powerful method
for matching the statistical distributions of two datasets, thus
paving the way to BCI systems capable of reusing data from
previous sessions and avoid the need of a calibration procedure.

Index Terms—Brain-Computer Interface, Riemannian geome-
try, Transfer Learning, Covariance Matrices, EEG.

I. INTRODUCTION

A Brain-Computer Interface (BCI) is a system that allows a
person to interact with a machine without any physical interac-
tion. It works by extracting features from neuro-physiological
signals (e.g., the power spectral densities on certain frequency
bands) and assigning them to different classes. These classes
may be associated to cognitive states, sensory responses, etc.,
and the features are chosen so that they are discriminative for
each class. Among the many types of neural signals that have
been used in BCI systems, electroencephalographic (EEG)
recordings have received particular attention and are the focus
of this paper. The success of EEG-based systems comes from
several reasons, such as its low price as compared to other
neuro-physiological modalities, its non-invasiveness, and its
high temporal resolution. However, they also have to cope
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with low signal-to-noise ratio, low spatial resolution [1], and
high cross-session and cross-subject variability [2].

While many signal processing techniques have been devel-
oped to ameliorate the quality of EEG signals and improve
its spatial resolution [3], the cross-session and cross-subject
variability problem have received much less attention. The
standard approach in BCI consists of re-training a statistical
classifier at the beginning of every experimental session with
the help of a sequence of calibration trials, a procedure that
can be time consuming and is clearly suboptimal, since it does
not leverage any information from past experiments. Instead,
“second-generation BCIs” initialize classifiers using Transfer
Learning and update their parameters along sessions, avoiding
the calibration step altogether [1].

We present in this paper a Transfer Learning approach based
on geometrical transformations for matching the statistical
distributions coming from two different experimental sessions,
a source and a target session. For simplicity of exposition,
hereafter we use the term “session” generically, however
source and target may refer to different sessions as well as
different subjects. We perform simple linear transformations,
such as translation, rotation, and scaling, on the data points
of both sessions with the goal of making the shape of their
statistical distributions as similar as possible. Once the distri-
butions are matched, one can expect that a classifier optimized
for the data of the source session will work well enough with
the data from the target session.

The branch of Machine Learning that studies the effects of
mismatches between statistical distributions is called Transfer
Learning [4]. It has been of great interest in several domains
besides BCI, such as in computer vision, where the statistics
of the data may vary due to changes in lighting conditions and
acquisition devices, or in speech processing systems, where the
changes in background noise and the differences in speaker
genders and voice tonalities may affect the statistics of the
signals. In [5], the phenomenon responsible for the drift in
statistical distributions of two datasets was termed covariate
shift and modelled by assuming that the distributions of the
data points can be different for the source and target datasets,
but the conditional distributions of the labels are the same.
Ref. [6] presented real data examples on BCI experiments
and showed that the covariate shift describes well the changes
in statistics for this kind of application. A recent attempt
in the literature on Transfer Learning has been to apply the
theory of Optimal Transport to determine which geometrical
transformations one should perform to match two statistical
distributions, as proposed in [7] and applied to the BCI P300
paradigm in [8]. This approach begins by first defining a
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function that models the cost of transporting a point at location
x to a location y. Then, it solves an optimization problem
that minimizes the total cost of moving each point of the
source dataset and make its statistical distribution as similar
as possible to the distribution of the target dataset. Note that
this is a completely unsupervised procedure and does not rely
on any assumption regarding the statistical distributions of the
datasets.

Another geometrical approach [9] matches the statistical
distributions from the source and target sessions by means
of a re-centering of their data points to the origin of the SPD
space, the identity matrix. During the process of review of this
paper, we came across the work in [10], which also proposes
a Transfer Learning procedure for SPD matrices in the spirit
of [9], but with the main difference that the data points are
re-centered to the midpoint between the geometric means of
the source and target datasets

Besides of distribution matching based on geometrical trans-
formations, there has been mainly two other kinds of proposals
for doing Transfer Learning in the BCI literature [2]. One
is based on the concept of ensemble classifiers [3], [11]–
[13], where the information from multiple source datasets are
combined into a “global” classifier, which is then used to label
the trials from any other target dataset. There has also been
works using Bayesian models to describe the variability of
the statistics on the source datasets and gather information
from multiple datasets [14]. A recent approach that builds
upon such Bayesian methods are the works in [15] and [16],
which use a special form of the P300 experimental paradigm
to do classification with no calibration. There are two main
differences between these approaches and our proposal in this
work. First, our approach is based on matching as much as pos-
sible the information from each source-target pair of datasets.
Thus, it can be used in addition to an ensembling approach
as in [12], which will combine the information from multiple
matched-source subjects. Second, our approach is paradigm-
agnostic and does not rely on any special modification of the
experimental setup where the EEG signals are collected (as
opposed to [16]), a feature that is appealing to a great number
of practionners.

Our approach for distribution matching is based on the con-
cept of Procrustes Analysis (PA) [17], a tool often employed
in statistical shape analysis [18] with applications in text
analysis [19], protein alignment [19], and many other fields.
PA works by first selecting a set of pairs of landmark points
from two different shapes and then performing geometrical
transformations to get these landmarks as close as possible
to each other. In our context, the shapes to be matched are
actually point clouds consisting of high-dimensional statistical
features describing EEG signals, and the landmarks are points
that can be used to describe these statistical distributions (e.g.
the mean, the farthest point from the mean, etc.). Because of its
linear nature in the Euclidean case, and the fact that the oper-
ations are always global (the same rotation/translation/scaling
is applied to all points each time), the space of transforma-
tions that one can cover using Procrustes Analysis does not
include all possible transformations between the statistics of
datasets. Nevertheless, the results that we have obtained on

BCI applications indicate that the set of transformations that
we apply are rich enough to model the covariate shift between
experimental sessions.

A particularity of our work is that we use the spatial
covariance matrices (SCM) of the EEG signals as statistical
features to discriminate between classes. SCMs are symmetric
positive definite matrices (SPD) and as such they are defined
in a Riemannian manifold [20] whose geometry is taken
into consideration during the classification procedure. Such an
approach has proved sucessful in BCI applications in recent
years [21]–[23] and has become part of the state of the art
of the field [2]. The geometric transformations that we use
for matching two statistical distributions are done taking into
account the intrinsic geometry of the SPD manifold as well.
Because of its geometry-aware nature, we call our method
Riemannian Procrustes Analysis (RPA).

RPA can be seen as an evolution of the aforementioned
procedures [9] and [10], with the re-centering step correspond-
ing to the first of a series of geometrical transformations.
Furthermore, the procedures in [9] and [10] are completely
unsupervised, since they do not use any information from the
labels of the data points, whereas RPA benefits from the labels
in the source session (which are all known in advance) as well
as from (at least part of) the labels that become sequentially
available in the target session trial after trial.

We compared the performance of the RPA procedure for
Transfer Learning to that of other distribution-matching meth-
ods proposed in [9], [10] and [7]. The results demonstrate
that the RPA yields a superior classification accuracy in both
simulated and real datasets. We also observe that, in general,
RPA needs a very small amount of labeled trials from the
target dataset to work well. Moreover, it is always superior (or
at least equal) to the performance obtained with calibration,
i.e., simply using the available trials on the target dataset and
not do any transfer from the source.

The remainder of the paper goes as follows: Section II
gives a mathematical formulation for the paradigm of Transfer
Learning that we consider in this work. Section III intro-
duces the tools for manipulating and classifying SPD matrices
in their Riemannian manifold, and Section IV presents the
method of Riemannian Procrustes Analysis. Sections V and VI
discuss the results on simulated and real data, respectively.
Lastly, Section VII concludes the paper.

II. PROBLEM FORMULATION

We consider two datasets, the source (S) and the target (T )
datasets. They are comprised of couples

S =
{

(Ci, yi) for i = 1, . . . ,KS

}
,

T =
{

(C̃i, ỹi) for i = 1, . . . ,KT

}
,

(1)

with Ci, C̃i ∈ Rn×n being data points, and yi, ỹi ∈ {1, . . . , L}
their corresponding class labels; KS and KT are the number
of trials in the source and target sessions respectively. In
this paper, the data points in S and T are always symmetric
positive definite (SPD) matrices and are used to parametrize
EEG multivariate time series [22]. As mentioned before,
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SPD matrices are defined in a Riemannian manifold, so it is
important that operations involving them respect the intrinsic
geometry of this space (see Section III for more information).

Our distribution matching method considers the semi-
supervised Transfer Learning paradigm [4], where one has
knowledge of all the labels from the source dataset and access
to a small subset of labels from the target dataset. Put in
mathematical terms, we assume knowledge of all the labels
from the elements in S and of a small subset T` ⊂ T with

T = T` ∪ Tu and T` ∩ Tu = ∅, (2)

where ` stands for labeled and u for unlabeled. We further
assume that T` has at least one example from each class.
This setup describes well applications where a few calibration
points from the target dataset can be used to guide the Transfer
Learning procedure. Another relevant case is online algo-
rithms, where labels are available sequentially and augment
the T` dataset after each time step.

Our goal is to train a classifier that leverages the available
information from S and T` and has good accuracy on the
classification of data points from Tu.

III. BACKGROUND AND NOTATION

This section begins with a brief introduction to concepts of
Riemannian geometry on SPD matrices. Then, we define the
notion of statistical distributions of SPD matrices and review
a simple way to do classification on datasets containing this
type of matrix.

A. The Symmetric Positive Definite manifold

Let P(n) be the set of n× n symmetric positive definite
(SPD) matrices, which is defined as

P(n) =
{
C ∈ Rn×n ∣∣ CT = C, xTCx > 0, ∀x ∈ Rn

}
.

(3)
Matrices in P(n) lie in a manifold [20], a set of points
with the property that the neighborhood of each C ∈ P(n)
can be bijectively mapped to an Euclidean space, also known
as its tangent space TCP(n). In particular, because P(n) is
an open subspace of the set Sym(n) of symmetric matrices
in Rn×n, we can identify its tangent space as simply being
Sym(n) [24]. If we endow every tangent space of a manifold
with a metric that changes smoothly along its elements, we
say that we have a Riemannian manifold [24]. In this case,
fundamental geometric notions are naturally defined, such as
geodesic (shortest curve joining two points), distance between
two points (length of the geodesic connecting them), the center
of mass of a set of points, etc.

There are several possible choices of metric for P(n) and
each one induces a different geometry that can be more or
less adequate according to the applications we are interested
in. A metric that is particularly relevant is the Affine-Invariant
Riemannian metric (AIRM) [20], defined for η, ξ ∈ TCP(n)
as the inner product

〈η, ξ〉C = tr
(
C−1ηC−1ξ

)
, (4)

where C ∈ P(n) and tr(·) denotes the trace operator. It is well
known [20] that the distance between matrices Ci, Cj ∈ P(n)
induced by (4) is

δ2R(Ci, Cj) =

n∑
k=1

log2(λk) , (5)

where the λk’s are the eigenvalues of C−1i Cj or of similar
matrix C−1/2i CjC

−1/2
i . Because of the many interesting prop-

erties of (5), such as invariance to affine transformations by
any invertible matrix A ∈ Rn×n,

δ2R(Ci, Cj) = δ2R(ACiA
T , ACjA

T ) , (6)

invariance under inversion, etc. [20], the AIRM has found great
popularity in geometry-aware algorithms for processing SPD
matrices [21] [25]. From now on, whenever we refer to P(n)
we will be implicitly considering it has been equipped with
the AIRM.

The center of mass according to distance (5) of a set of
SPD matrices {C1, . . . , CK} is defined as [1]

G
(
{Ci}Ki=1

)
= argmin

X∈P(n)

K∑
i=1

δ2R(X,Ci) . (7)

In words, G
(
{Ci}Ki=1

)
is the point in the manifold minimizing

the dispersion (variance) of the set of matrices. Note that when
the Ck’s are actually strictly positive scalars, G

(
{Ci}Ki=1

)
is

their geometric mean. This explains why many researchers
adopt the term “geometric mean” to refer to the center of mass
of a set of SPD matrices. For three or more matrices, there is
no closed form solution for (7), so one has to resort to iterative
algorithms as the one given in [26]. The above definitions
suffice for the intents of this paper, but the interested reader
will find a thorough treatment of the subject in [20].

B. Statistical distributions in the SPD manifold

In this work, we assume that the data points come from
statistical distributions that can be parametrized just by their
geometric mean and the dispersion of points around it. More
precisely, we assume that the statistical distribution generating
the samples of the dataset is a mixture of Riemannian Gaussian
distributions on the SPD manifold (one for each class) [27].

Under this assumption, we parametrize the statistics of each
dataset defined in (1) using a set consisting of L+2 elements :
the geometric mean M of the dataset, the geometric means Mk

of each of the L classes, and the dispersion d around M . We
have then

ΘS =
{
M,M1, . . . ,ML, d

}
,

ΘT =
{
M̃, M̃1, . . . , M̃L, d̃

}
,

where
M = G({Ci | Ci ∈ S}) ,

M̃ = G({C̃i | C̃i ∈ T`})
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are the center of mass or geometric means of the datasets (all
classes combined),

d =
∑
Ci∈S

δ2R(M,Ci) ,

d̃ =
∑

Ci∈T`

δ2R(M̃, Ci)

are the dispersions around the geometric mean, and

Mk = G({Ci | Ci ∈ S and yi = k}) ,

M̃k = G({C̃i | C̃i ∈ T` and ỹi = k})

are the geometric mean of the trials belonging to each class.
Note that the parameters for the target dataset are estimated
using only the data points from T`.

The law of great numbers from statistics also applies to
datasets containing SPD matrices [20]. In particular, if the
elements of a dataset come from a statistical distribution
with geometric mean M , the center of mass of a set of K
matrices will converge to M as K grows. This implies that in
experimental paradigms where the trials come in sequentially,
it is reasonable to expect that with more trials one will obtain
better and better estimates of the geometric mean.

C. Classification in the SPD manifold

There are many known classifiers for datasets whose el-
ements are SPD matrices [22]. In this paper, we use the
Minimum-Distance to Mean (MDM) classifier [21], which
works as follows: in the training phase, calculate the geometric
means for each class of a training dataset (Dtrain). In the
testing phase, each matrix Ci from the testing dataset (Dtest) is
associated to the label yi of the class mean that is the closest
to Ci. Note that the statistical model described in Section III-B
fits well the MDM classifier, since it assumes that the statistics
of the dataset can be described by the geometric means of its
classes.

IV. TRANSFER LEARNING VIA PROCRUSTES ANALYSIS

This section presents the Riemannian version of the Pro-
crustes Analysis or RPA. We first introduce the concept of
Procrustes Analysis on an Euclidean setting and then describe
how to perform equivalent transformations on the SPD man-
ifold. Then, we justify such operations with the help of a
model relating the statistical distributions of the source and
target datasets. Such model is the main theoretical contribution
of this paper, since it gives a concrete justification for the
geometric operations done in the RPA procedure and allows
for a better comprehension of the assumptions that one has to
make regarding the statistical distributions of the datasets.

A. Matching statistical distributions

A common approach to match two shapes in Euclidean
space is the Procrustes Analysis [17], which works as follows :
suppose we have two sets of landmark points

X =
{
xi ∈ Rn

}m
i=1

and X̃ =
{
x̃i ∈ Rn

}m
i=1

, (8)

and assume there is a linear relationship relating the m pairs
of landmark points as in

x̃i − m̃ = s U
(
xi −m

)
, (9)

where s ∈ R, m, m̃ ∈ Rn, and U ∈ Rn×n is an orthogonal
matrix. The goal of the procedure is to determine the values of
{s,m, m̃, U} so to obtain a new set X̃ (PA) containing points
x̃
(PA)
i that matches exactly with xi, where

x̃
(PA)
i −m =

1

s
UT
(
x̃i − m̃

)
. (10)

Note that the operations transforming x̃i can be interpreted as
a re-centering to zero (subtracting m̃) followed by a stretching
or compression (division by s), and a rotation (multiplication
by UT ); the final re-centering to m is optional, since it is often
more interesting to re-center X to the origin and consider only
the zero-mean matched shapes.

B. Riemannian Procrustes analysis (RPA)

In order to do Procrustes Analysis on SPD matrices, we
have to adapt the steps of re-centering, stretching and rotation
according to the intrinsic geometry of P(n). We call such
procedure Riemannian Procrustes Analysis (RPA) and describe
its steps here below :

1) Re-center matrices to identity: In P(n) the Identity
matrix plays the role of the origin of the space. Therefore,
the first step of RPA is to transform the matrices in S and
T so they are both centered around In (see Fig. 1B). This
amounts to the transformation proposed in [9] if the covariance
matrices used to describe the resting activity of each session
were chosen to be the geometric mean of the trials of each
dataset.

Due to the affine-invariance of (5) and (7), the geometric
mean of the set of re-centered matrices

C
(rct)
i = M−1/2CiM

−1/2 (11)

is In. Moreover, since M̃ is estimated from a subset of points
in T` ⊂ T , the geometric mean of the set of matrices

C̃
(rct)
i = M̃−1/2C̃iM̃

−1/2 (12)

is approximately the identity matrix (it tends to the identity as
the number of elements in T` grows).

We have then two new datasets consisting of re-centered
matrices

S (rct) =
{

(C
(rct)
i , yi) for i = 1, . . . ,KS

}
,

T (rct) =
{

(C̃
(rct)
i , ỹi) for i = 1, . . . ,KT

}
,

(13)

with the indices of the partition T (rct) = T (rct)
` ∪ T (rct)

u being
the same as in (1).

2) Equalize the dispersions on each dataset: The next step
of RPA consists of rescaling the distributions on both datasets
so that their dispersions around the mean are the same (see
Fig. 1C). To do so, we can see from (5) that

δ2R

((
C̃ (rct)

i

)s
, In

)
= s2 δ2R

(
C̃ (rct)

i , In

)
, (14)
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which implies that one can modulate the dispersion of T (rct)

by simply moving each of its matrices along the geodesic
that links it to the identity matrix. Note that the parameter s
plays the same role of the scaling factor in (9). We match the
dispersions from source and target by building a new dataset
T (str) containing the stretched matrices

C̃
(str)
i =

(
C̃

(rct)
i

)s
, (15)

where we require s ∈ R to verify

s2 = d/d̃ . (16)

Note that the re-centering of matrices in Step 1 does not alter
the dispersion of the matrices around their geometric mean,
which means that the stretching step could have been done
before re-centering the matrices in T . However, in this case,
the geodesic move in (15) would have to be done with respect
to M̃ , that is, we would have to use a more involved relation

C̃ (str)
i = M̃1/2

(
M̃−1/2C̃iM̃

−1/2
)s
M̃1/2 . (17)

Note that up to this point no information from the trials’
classes has been used. We say then that the recentering and
stretching operations form the unsupervised part of the RPA
method.

3) Rotate around the geometric mean: The last step con-
sists of rotating the matrices from T (str) around the origin and
matching the orientation of its point cloud with that of S (rct)

(see Fig. 1D). To do so, we note that if U is an orthogonal
matrix, then

δ2R(UT C̃ (str)
i U, UTU) = δ2R(C̃ (str)

i , In) , (18)

which indicates that the effect of an orthogonal matrix over
a set of matrices centered at the identity is that of a rotation
around their mean. We form a new dataset T (rot) containing
rotated matrices with

C̃
(rot)
i = UT C̃

(str)
i U , (19)

where U is an orthogonal matrix to be determined from the
data. As we will see in the next sub-section, matrix U is
determined using the labels from the trials, so it corresponds
to the supervised part of the procedure.

C. The orthogonal matrix U

The procedure to determine matrix U comes up naturally
once the assumptions of the RPA method are written in
mathematical form. For simplicity, we will first assume that
T` = T . We use the geometric means of the source and target
datasets as landmarks to be matched, so one can write

M̃ = A M AT , (20)

and
M̃k = A Mk A

T k ∈ {1, . . . , L} , (21)

where M,M̃,Mk, M̃k are all defined in Section III-B, and
A ∈ Rn×n is an unknown invertible matrix that models the

discrepancies between the statistics of the source and target
datasets. We can rewrite the relation in (20) as(

M̃1/2M̃1/2
)

= A
(
M1/2M1/2

)
AT , (22)

In = M̃−1/2A
(
M1/2M1/2

)
AT M̃−1/2 , (23)

In =
(
M̃−1/2AM1/2

)(
M̃−1/2AM1/2

)T
, (24)

UUT =
(
M̃−1/2AM1/2

)(
M̃−1/2AM1/2

)T
, (25)

where U is the n × n orthogonal matrix that we want to
determine. Matrix U can then be simply written as

U = M̃−1/2AM1/2 , (26)

where M and M̃ are directly estimated from the data points
as explained in Section III-A, and A remains unknown. To
determine an expression for U only in terms of variables that
can be estimated from the data, we use (26) in (21) to get

M̃k =
(
M̃1/2UM−1/2

)
Mk

(
M̃1/2UM−1/2

)T
, (27)

M̃−1/2M̃kM̃
−1/2 = U M−1/2MkM

−1/2 UT . (28)

Defining the matrices

Gk = M−1/2MkM
−1/2 (29)

and
G̃k = M̃−1/2M̃kM̃

−1/2 , (30)

and using the expression in (20) for M̃ , one can rewrite (28)
as

G̃k = M̃1/2A−TM−1/2GkM
1/2AT M̃−1/2 (31)

and conclude that Gk and G̃k are related via a similarity
transform. Similar matrices having the same eigenvalues, one
can write the eigendecompositions

Gk = QkΛQT
k and G̃k = Q̃kΛQ̃T

k

so that (28) becomes

Q̃kΛQ̃T
k = U QkΛQT

k UT . (32)

Solving (32) for U we obtain

U = Q̃kQ
T
k , (33)

which is ultimately an expression in terms of variables esti-
mated from the dataset. Note that (33) is also the solution to
the following optimization problem

minimize
UTU=In

δ2R

(
G̃k, UGkU

T
)
, (34)

and so it can be interpreted as the orthogonal matrix that acts
to minimize the distance between a modified version of the
class means of the source and target datasets.
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D. Determining U from data

In the previous section, we assumed T` = T . In practice,
however, we have T` ⊂ T , so the estimation of the class means
of the target dataset are only approximations of the real class
means of the statistical distribution. Because of this, instead
of giving preference to a particular noisy estimate of a class
mean to determine U via (33), we obtain it as a solution to the
following optimization problem on the manifold of orthogonal
matrices :

minimize
UTU=In

L∑
k=1

wkδ
2
R

(
G̃k, UGkU

T
)
, (35)

where the wk ∈ [0, 1] are coefficients allowing to balance the
optimization according to the quality of the estimators for the
mean of each class. Note that problem (35) is a generalization
of the Procrustes problem in the SPD manifold proposed
in [28]. We solve (35) using a special form of the steepest-
descent algorithm adapted for optimization procedures on
manifolds, as described in [24]. To do so, we first rewrite
each term of the cost function in (35) as

fk(U) = δ2R

(
G̃k, UGkU

T
)

(36)

and express its Jacobian as

DUL(U) =

L∑
k=1

wk DUfk(U) , (37)

with

DUfk(U) = 4 log
(
G̃kUGkU

T
)
U , (38)

where the derivative of the AIRM distance was obtained
from [29]. On each iteration of the gradient descent procedure,
the vector DUfk(U) is projected onto the tangent space of the
manifold of orthogonal matrices (see [24] for details). We used
the pymanopt package [30] for carrying out the optimization
procedure.

E. Classification on the transformed datasets

Once the datasets have been transformed with RPA, we use
the MDM classifier (see Section III-C) to infer the unknown
labels from the elements in Tu. In the training phase we have

Dtrain = S (rct) ∪
{

(C̃ (rot)
i , ỹi)

∣∣ (C̃i, ỹi) ∈ T`
}
, (39)

and in the testing phase we infer the labels from

Dtest =
{

(C̃ (rot)
i , ỹi)

∣∣ (C̃i, ỹi) ∈ Tu
}
. (40)

F. Summary of the RPA method

Algorithm 1 recapitulates the steps of a classification task
using RPA for matching the statistical distributions of the
source and target datasets.

Algorithm 1: Transfer Learning via RPA
Input: S, T` and Tu as defined in (1) and (2)
Output: accuracy of classification using MDM on Tu

1 Estimate M and M̃ from the data in S and T`
2 Re-center the matrices in S and T using (11) and (12), and form new

datasets
S(rct) and T (rct) = T (rct)

` ∪ T (rct)
u

3 Calculate the ratio of dispersions in S(rct) and T (rct)
` as in (16) and use

it to form the new dataset

T (str) = T (str)
` ∪ T (str)

u

with matrices as described in (15)

4 Estimate matrices Mk and M̃k for k ∈ {1, . . . , L} and obtain the
orthogonal matrix U as a solution from (35)

5 Rotate the matrices from T (str) as in (19) and obtain

T (rot) = T (rot)
` ∪ T (rot)

u

6 Form the training dataset for the MDM classifier with

Dtrain = S(rct) ∪ T (rot)
`

and get the accuracy of classification on the data points from the test
dataset

Dtest = T (rot)
u

G. An interpretation of the steps in RPA

We give now an interpretation of the steps of RPA in terms
of the statistical distributions of the datasets. Without loss of
generality, we will consider that d = d̃, since the dispersions
can always be made equal prior to the transformations. We
will also assume T` = T for simplicity.

The relations in (20) and (21) define which landmark data
points we should match in the RPA procedure, an approach
that is justified from the fact that we parametrize the statistics
of S and T using their geometric means, as described in
Section III-B. From this observation, one can also conclude
that a simple approach for matching the statistical distributions
of S and T would be to estimate matrix A from the available
data points and apply A−1 to all the elements of T , as in

C̃i 7→ A−1C̃iA
−T . (41)

From (26) we can write

A = M̃1/2UM−1/2 , (42)

where M and M̃ are estimated directly from the dataset,
and the orthogonal matrix U is determined as discussed in
Section IV-C. Applying A−1 to the matrices in T , we get

A−1C̃iA
−T = M1/2

[
UT
(
M̃−1/2C̃iM̃

−1/2
)
U
]
M1/2 ,

(43)
which describes the same steps of RPA: re-center to identity,
stretch (with s = 1) and rotate, followed by a translation of
the mean back to M . From the expressions above, we see that
the sequence of operations in RPA are nicely justified by the
assumptions of our statistical model for the data points.
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V. NUMERICAL ILLUSTRATIONS : SIMULATED DATA

A. The dataset

Our example on simulated data consists of a source and a
target datasets containing 2×2 SPD matrices and belonging to
two classes. Data points from the source dataset are generated
as follows:

1) Generate a random SPD matrix M1 ∈ P(2) and define
it to be the geometric mean of class 1

2) Generate Nt = 100 random SPD matrices around M1

by mapping small random tangent vectors (norm fixed
to ε = 10) from TM1P(2) back to the SPD manifold.
We associate to each of these matrices the label yi = 1

3) Generate a random SPD matrix M2 whose distance to
M1 is s = 5. This is the geometric mean for class 2

4) Generate Nt = 100 random SPD matrices around M2

by mapping small random tangent vectors (norm fixed
to ε = 10) from TM2P(2) back to the SPD manifold.
These matrices have a label yi = 2 associated to them

We generate the data points from the target dataset (T )
exactly as for the source dataset, but add an extra translation
step that ensures that the geometric mean of all the matrices
from S will be at a distance d = 8 from the geometric mean
of T .

B. Visualization of the steps of RPA

We use the algorithm of Diffusion maps [31] to obtain
new representations of our data points using only two axis.
This nonlinear dimensionality reduction algorithm works by
first building a matrix with all pairwise distances between
data points. Then, it calculates a new matrix called Laplacian
which contains important information on the geometry of the
low-dimensional manifold where the data points are assumed
to live. The axis for the new data representations are then
obtained from the spectral decomposition of the Laplacian
matrix (see [32] for more details on the algorithm and [33]
for an application on multivariate time series).

Figure 1 illustrates the distribution of data points after each
step of RPA applied to the source and target datasets. In this
example, we consider that we know the labels of all matrices
from the target dataset, i.e., T = T`. Figure 1A shows the
point clouds of each dataset, which are clearly unmatched.
After recentering (Fig. 1B), stretching (Fig. 1C) and rotating
(Fig. 1D), the statistical distributions get matched and the same
classifier can be used on both datasets.

C. Classification accuracy after RPA

We compare the classification accuracy results on the sim-
ulated dataset for six different methods of Transfer Learning.
In each of them, the training and testing datasets are different
but the classifier is always the MDM :
• direct (DCT): direct use of the points from the source

dataset to do classification on the target dataset (no
transformation whatsoever).

• recentering (RCT): transfer learning considering only
the data points of each dataset recentered to In. This

corresponds to step (1) in the RPA procedure and is
similar to what has been done in [9].

• parallel transport (PRL): transfer learning using the
method proposed in [10]. The procedure is analogous to
RCT, but with the points being re-centered to the halfway
point along the geodesic path linking the geometric means
of each dataset instead of the Identity matrix.

• optimal transport (OPT): transfer learning using the
optimal transport approach proposed in [7] and adapted to
take into account the fact that we have data points defined
in the SPD manifold instead of Euclidean vectors.

• RPA: transfer learning with matrices transformed using
RPA, as described in Section IV-B.

• calibration: classification using only the labeled trials
available in the target dataset, with no help from the data
in the source dataset.

We assess the performance of each method via a randomized
cross-validation procedure consisting of:

1) Select 2n random elements from T (n from each class).
These data points define T`

2) Define the test dataset Tu containing the other 200−2n
elements of T

3) Obtain the accuracy of the classification via MDM for
this particular partition of T

4) Repeat the three preceeding steps 10 times and get the
mean accuracy for each method.

The results in Fig. 2 show that the DCT pipeline gives
classification results at chance level (0.5) independently of
the number of matrices available in T`. We also observe
that simply using RCT already greatly improves classification
accuracy, as reported in [9]. Our RPA method further improves
the results. We also observe that PRL has virtually the same
performance as RCT, which is not surprising, since they are
both unsupervised methods based on the idea of re-centering
the datasets to a common point in the SPD manifold. The
results with OPT are equivalent to RCT and PRL as well.
The accuracy with calibration improves when the number
of available labels in the target dataset increases, eventually
converging to the same performance as RPA. This result is not
surprising, because with a sufficient amount of data in T` it is
already possible to train a good classifier without the need of
doing transfer learning.

Our observations in this session are in accordance with
the theoretical results of [34], which says that “if there is
enough target data, then no source data are needed (...). This is
because the possible reduction in error due to additional source
data is always less than the increase in error caused by the
source data being too far from the target data”. Such a result
points to the existence of a certain “saturation” effect in the
quality of transfer learning when too many trials are available
in the target session, a behavior that could be exploited to
decide when to stop transferring information from previous
experimental sessions.

VI. NUMERICAL ILLUSTRATIONS : REAL DATA

The analysis on real data were all done using EEG record-
ings from experiments with Brain-Computer Interfaces (BCI)
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(A)

(C)

(B)

(D)

original recentering

stretching rotation

Fig. 1. Representation of the sequence of operations of RPA applied to a
dataset simulated as described in Section V-A (better visualized with colors).
Each point on the scatter plot represents a SPD matrix and the axes for the
figures were obtained using Diffusion Maps [32]. The filled dots (degree of
transparency set to α = 0.30) represent the target dataset whereas the circles
are the source dataset. Each color represents a class and the black star is
the Identity matrix. (A) Distribution of the SPD matrices in the source and
target datasets as they are originally available and (B) after re-centering their
geometric means to the Identity. In (C) the distribution after the stretching
operation and (D) after the rotation.

Fig. 2. Accuracy of the classification of unlabeled data points from the target
dataset for different methods of transfer learning. The curve shows how the
accuracy for each method evolves when the number of data points in T`
increases. The generation of the data points is explained in Section V-A.

experiments. As usual, the EEG signal is a n-dimensional
multivariate time-series and is denoted by x(t) where each
dimension represents an electrode. Each experimental trial i
lasts a few seconds and is associated to a matrix Xi ∈ Rn×T ,
where T is the number of time samples defining the trial.
To every trial we associate a SPD matrix Ci describing its
multivariate statistics and a label yi indicating what was the
task performed during the trial. The dataset for each subject
is composed of a set of couples (Ci, yi). Our investigation
focuses on the classification accuracy of a MDM classifier
that is trained with the data from a source subject and is
used to classify the signals from a target subject. We compare

TABLE I
MAIN FEATURES DESCRIBING EACH DATASET USED IN THIS WORK.

dataset paradigm subjects classes trials per class reference

PhysionetMI MI 109 2 22 [38]
Cho2017 MI 50 2 100 [39]
SSVEP SSVEP 12 3 8 [37]
P300 P300 24 2 72 and 360 [36]

BNCI2014001 MI 9 4 72 [40]
BNCI2014002 MI 15 2 80 [41]
BNCI2015001 MI 13 2 100 [42]

MunichMI MI 11 2 150 [43]

the performance of such classifier using the different Transfer
Learning strategies described in Section V-C.

A. The datasets

The investigations were carried out on eight datasets cover-
ing three different BCI paradigms. All Motor Imagery datasets
are publicly available and were downloaded and pre-processed
using the MOABB framework [35]. The P300 dataset comes
from experiments performed in our laboratory on the P300-
based game Brain Invaders [36]. The SSVEP dataset was the
same as the one presented in [37]. See Table I for a brief
overview of each dataset’s features.

We estimated the SPD matrices for each BCI paradigm
differently. For the MI datasets, the SPD matrices were the
spatial covariance matrices of the multivariate EEG recordings.
The signals of each trial in the SSVEP paradigm were filtered
using bandpass filters around certain frequencies of interest
and its SPD matrices were diagonal blocks concatenating the
spatial covariance matrices of the filtered signals [1]. For the
P300, the SPD matrix of each trial was obtained using the
approach from [44], where one estimates a special form of
covariance matrix that captures the influence of event-related
potentials in each trial.

B. Comparing cross-subject classification accuracies

In this section, we compare the accuracy of the classification
of trials for each pair of target and source subject. The
classification is done using the MDM classifier and the values
of the accuracies are assessed using the same cross-validation
scheme explained in Section V-C.

We begin with a qualitative analysis of the cross-subject
classification accuracy using a tool from combinatorial data
analysis called seriation [45]. This procedure sorts the lines
and columns of a data matrix in order to make relevant patterns
appear. In our case, the matrix S to be re-ordered contains at its
(i, j) coordinate the accuracy of the classification using subject
i as target and subject j as source. The rows of S are then
sorted in decreasing order of columns sum, and the columns
of this row-sorted-matrix S are rearranged in decreasing order
of their rows sum. The output of this procedure is a new
representation where the pairs of source-target subjects with
the best accuracy are located at the top-left region of the
matrix, while the worst pairs are at the bottom-right region.
Figure 3 shows the results of this seriation procedure on the
PhysionetMI dataset for two sizes of T` (the number of labeled
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target trials) and three different pipelines: DCT, RCT, and
RPA. We observe that with RCT and RPA there are more pairs
of subjects with high values of cross-subject classification than
with DCT. In particular, for RCT and RPA we note that
there are a few target subjects that have very good accuracy
on classification for almost all possible source subjects, a
feature that is possibly related to the performance of each
target subject to classify its own trials (intra-subject accuracy).
This can been interpreted as : subjects that are “good” for
classifying their own data should be “good” for receiving
information from other source subjects. We also observe a
clear improvement in the average value of the cross-subject
classification accuracies when more points are available in T`.

Our next analysis consisted in calculating the mean over
all cross-subject AUC (Area Under the ROC Curve) for each
Transfer Learning pipeline on each dataset. We used these
values as quantitative measures for assessing whether one
pipeline is better than the other on cross-subject classification.
The scores are shown in Table II. We should mention that
only the subjects whose intra-score AUC (i.e., classification
of its own data) was above chance level were used in these
calculations.

Figure 4 shows the results of statistical tests performed
on each pair of methods, allowing for a more substantiated
assessment of the performance of the methods. The statistical
tests comparing method A versus method B were carried
out in the following way: (1) For each source subject j,
we perform a signed paired t-test comparing the scores of
method A to method B along all target subjects. Each of
these tests yield a statistic Tj and a p-value pj is obtained
via permutations tests [46]. (2) We combine the p-values of all
the source subjects using Stouffer’s Z-score method [47]. This
yields a single p-value for the comparison between methods
as well as the direction to which the null hypothesis has been
rejected (i.e., whether method A is better than B or vice-versa).
(3) We adjust p-values of each pairwise comparison using
Holm’s step-down procedure [48] to account for the multiple
comparison problem.

The results in Figure 4 indicate that when there are enough
points in T` (“enough” depending on each dataset), transform-
ing the data points with RCT, PRL or RPA is always better
than not doing any distribution matching (DCT). We also
observe that most of the time there is no statistical significance
between the results with PRL and RCT, as expected, since
they both amount to re-centering the datasets to a new point
in the SPD manifold. For increasing values of N (the number
of labeled trials in the target dataset), RPA gets better in
comparison to almost all other methods, as expected and
observed in Figure 2 for simulated data. Interestingly, OPT
has very poor results in comparison to all other methods,
probably because it does not use any prior hypothesis on
the statistical distributions of the datasets and has to solve a
difficult optimization problem to determine its transportation
plan. Lastly, during our statistical analysis of the results, we
have observed that better results on Transfer Learning via RPA
are often associated to good intra-subject accuracy, since in
this case the estimation of the class means is more stable and
thus the rotation matrix U is better estimated. This explains
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Fig. 3. Accuracies of the cross-subject classification for three different Trans-
fer Learning procedures on the PhysionetMI database. The rows and columns
of each subplot were reordered using the seriation procedure explained in the
text. The colormap shows white for accuracies of 0.5 or less and black when
it is 1.0. The compared methods are described in Section V-C and we consider
the cases when there are one and ten labeled matrices in T`.

why for some databases (e.g. PhysionetMI) the RPA is not
necessarily the best method for Transfer Learning and an
unsupervised approach like RCT has better results.

C. The role of the size of T`
As pointed out in the simulation results from Section V-C,

when the size of T` increases, using Transfer Learning is no
longer relevant, since one may already have enough data to
build a good classifier for the target subject. To investigate this
behavior on our real datasets, we compared the cross-subject
classification accuracy of RPA to that of the calibration
method (see Section V-C for details).

Figure 5 shows a scatter plot comparing the classification
accuracies on the MunichMI dataset. We see that when T`
grows, there are more pairs of subjects for which the classi-
fication using the calibration method on the target subject is
better than doing transfer learning via RPA (28% to 34% of
all the pairs of subjects). However, the location of the cloud of
points in the figure indicates that the Transfer Learning with
RPA is still superior to the Calibration method for most pairs
of subjects. We used a one-sided paired t-test with random
data permutation [46] to compare the accuracies of RPA and
calibration on each dataset for different sizes of the T`. The
null hypothesis of equivalency between the two methods was
rejected (p < 0.01) on almost all tests, the only exception
being for those on the BNCI2014001 dataset. Moreover, for
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TABLE II
MEAN VALUES OF THE CROSS-SUBJECT AUC (AREA UNDER THE ROC CURVE) FOR FIVE PIPELINES (ALL DESCRIBED IN SECTION V-C) ON EIGHT
DIFFERENT DATASETS. PARAMETER N IS THE NUMBER OF TRAINING POINTS AVAILABLE ON THE target DATASET ON EACH SITUATION. THE BEST

METHOD IN EACH INSTANCE IS WRITTEN IN BOLD.

MEAN	AUC

Ph
ys
io
ne
tM

I

N DCT RCT PRL OPT RPA
1 0.54 0.61 0.61 0.59 0.56
5 0.55 0.65 0.65 0.60 0.63
10 0.56 0.67 0.67 0.60 0.66
15 0.57 0.68 0.68 0.60 0.67

MEAN	AUC

SS
VE

P

N DCT RCT PRL OPT RPA
1 0.64 0.67 0.66 0.59 0.70
2 0.67 0.71 0.71 0.59 0.75
4 0.72 0.76 0.76 0.59 0.80
6 0.74 0.78 0.78 0.57 0.82

MEAN	AUC

Ch
o2

01
7 N DCT RCT PRL OPT RPA

1 0.54 0.59 0.58 0.57 0.54
5 0.55 0.61 0.61 0.57 0.59
10 0.55 0.62 0.62 0.57 0.62
25 0.57 0.64 0.64 0.58 0.66

P3
00

N DCT RCT PRL OPT RPA
6 0.57 0.56 0.56 0.58 0.55
12 0.62 0.64 0.64 0.61 0.63
32 0.71 0.74 0.74 0.67 0.73
48 0.74 0.76 0.76 0.69 0.75

MEAN AUC

N DCT RCT PRL OPT RPA
1 0.58 0.69 0.69 0.65 0.62
6 0.59 0.73 0.73 0.65 0.71
18 0.61 0.76 0.76 0.65 0.76
36 0.64 0.78 0.77 0.66 0.79

MEAN AUC

BN
CI
20
14
00
1

MEAN	AUC

N DCT RCT PRL OPT RPA
1 0.51 0.56 0.55 0.54 0.57
5 0.51 0.57 0.57 0.55 0.60
10 0.52 0.59 0.58 0.56 0.63
25 0.54 0.62 0.62 0.56 0.65

BN
CI
20
15
00
1

MEAN	AUC

N

1
5
10
20

DCT RCT PRL OPT RPA
0.55 0.68 0.67 0.64 0.63
0.56 0.71 0.70 0.64 0.70
0.57 0.72 0.71 0.65 0.72
0.58 0.73 0.72 0.65 0.73

BN
CI
20
14
00
2

N DCT RCT PRL OPT RPA
1 0.55 0.63 0.63 0.61 0.55
25 0.58 0.69 0.69 0.62 0.68
50 0.60 0.71 0.71 0.62 0.72
75 0.62 0.72 0.72 0.62 0.73

MEAN	AUC
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Fig. 4. Results of the statistical tests on each pair of pipelines for all possible values of N on each dataset as indicated in Table II (for instance, on Cho2017
we have N1 = 1, N2 = 5, N3 = 10, and N4 = 25). The color/pattern of the squares indicate whether there’s no statistical difference between two methods
(white squares), if the Left method is superior to the Right one (L and R in the legend) (dark gray squares) or the contrary (squares with crossed patterns).
All conclusions are with p < 0.05 corrected via Holm’s adjustement [48]. For instance, we see that for dataset Cho2017, the method RPA is inferior to RCT
when N = 1, but RPA becomes superior when N = 25. Furthermore, for this same dataset, there’s no statistical difference in the comparison between PRL
and RCT for any N .

Fig. 5. Scatter plots comparing the accuracies of the cross-subject classifi-
cation on the MunichMI dataset for the RPA and Calibration methods. We
consider two sizes for T`. The percentage numbers indicate the proportion of
dots above or below the diagonal line.

the tests where H0 was rejected, we observed a superiority of
RPA in comparison to calibration.

D. Combining information from multiple subjects

We investigated how the matching of statistical distributions
via RPA affects the performance of two baseline methods
for gathering information from the data of multiple subjects:

pooling and ensembling. The classification for each target
subject is done using information coming from all other
source subjects available in the database. Following the same
approach as in previous sections, we only considered source
subjects featuring an intra-subject accuracy above chance
level, i.e., subjects in which it is meaningful to use transfer
learning. The experiments were done on the PhysionetMI
dataset with |T`| = 15 labeled trials available for each target
subject and the Cho2017 dataset with |T`| = 25.

The pooling strategy consists of gathering for each target
subject the data from all other source subjects into one big
dataset. Then, a classifier is trained on the pooled dataset and
used to infer the trials from the target subject. We compared
the performance of a MDM classifier when the source subjects
were pooled with no transformation (DCT) to when the
statistical distributions of each source subject were matched
to that from the target subject using RCT or RPA (PRL is
not fit for pooling, since the matrices are not all recentered to
the same place in the SPD manifold). The boxplots in Figure 6
show the distributions of the classification scores of each of
the target subjects. Using pairwise one-sided paired t-test
with random permutations, the null hypothesis of equivalency
between the scores of DCT, RCT, and RPA were all rejected



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL, NO. 11

Fig. 6. Box plots with the distribution of the classification scores for the
ensembling and pooling strategies for different methods of statistical matching
between datasets. For the Cho2017 dataset we had 25 labeled trials in the
target dataset and for the PhysionetMI there were 15 labeled trials in it.

with p < 10−6 (adjusted for multiple comparisons). The
results show a clear improvement in the average score for
the pooling strategy when using a method for matching the
statistics of the source and target datasets, with differences of
at least 15% between RPA and DCT for both datasets.

Our second analysis considered an ensembling strategy,
where the trials of each target subject were classified using
a majority voting scheme. These votes came from MDM
classifiers trained on all other source subjects and were
weighted equally. The results in Figure 6 show the scores
with each method (including the PRL approach this time).
To compare the scores of each method, we used pairwise
one-sided paired t-tests with random permutations (corrected
for multiple comparisons). The results of the statistical tests
indicate that the ensembling strategy with RPA is superior as
compared to DCT in the PhysionetMI dataset (p < 0.05) but
they are equivalent for the Cho2017 dataset (p = 0.23). The
RCT method is superior to DCT for both datasets (p < 0.01)
whereas the scores with PRL are equivalent to DCT for both
datasets. We see then that the ensembling strategy can also be
improved when adding an extra step for matching the statistics
of the datasets of each pair of source-target subjects.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a new method for over-
coming the negative effects of statistical distribution mismatch
between subjects in BCI classification. Our proposal consists
of a sequence of geometrical transformations on the data
points from two sessions with the intention of making the
shapes of their point clouds in a high-dimensional space as
similar as possible. The inspiration for this method comes

from Procrustes Analysis, however, here the method has been
adapted to the case where the data points are SPD matrices
and live in a Riemannian manifold, which is here proposed
for the first time. Another relevant theoretical contribution
is the mathematical framework proposed in Section IV-B,
which includes the methods in [9] and [10] and extends them,
leading to our RPA method. Such formalism allows for a
better understanding of the intrinsic assumptions regarding the
statistics of the data points during the distribution matching
procedure.

An important aspect of our proposal is that we exploit the
availability of supervised information in the source session as
well as the sequential nature of the trials in the target session.
It should be noted, however, that when no labels are available
for the target session, a re-centering of data points based solely
on the geometric means of each dataset (which does not rely
on any supervised information) already greatly improves the
cross-session and cross-subject classification, as first noted
in [9]. This would be the case, for instance, in BCI applications
for people with extreme motor disability, where the labeling
of classes is very challenging. In this kind of situation, one
may still perform the re-centering and stretching steps of the
RPA method for matching the statistical distributions, turning
the transfer learning procedure into a completely unsupervised
one.

We have assessed the superiority of the RPA method on
several publicly available datasets and have used a heteroge-
neous panel of statistical tools to analyze the results. Also,
we have included in our study other recent contributions from
the literature, leading to a comprehensive comparison of the
performance of state-of-the-art methods. We hope that the
breath of the analysis performed here will be useful as a
reference for future works related to Transfer Learning on
the SPD manifold. In order to foster reproducible research,
complete Python code for the results in this paper is available
at https://github.com/plcrodrigues/RPA.

Future perspectives for this work shall include an online
implementation of our method, where usual drifts in statistics
from signals on the same session would be corrected via distri-
bution matching. An important challenge for such procedure
would be to detect when changes in the statistics occur as
well as when the number of new trials is already large enough
so that no information from data points drawn from previous
statistical distributions are needed. Another interesting line of
work would be to go further in the analysis of Section VI-D
by extending the methods proposed in [12], [14], and [13]
with a statistical matching step based on the RPA. Finally,
another interesting topic to investigate would be to consider a
Transfer Learning approach for matching data from subjects
having different numbers of electrodes.
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